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Executive Summary 
A high-fidelity computational fluid dynamics 

study was conducted into the feasibility of 

directly cooling a bus driver’s head using a 

turbulent jet situated in the centre of the 

steering wheel.  

The properties of the jet were determined 

directly for an arbitrary nozzle diameter and exit 

velocity from the high-fidelity simulation and 

indirectly from lower-fidelity simulations using 

standard RANS closure models.  

The temperature of the jet was modelled in 

post-processing using a direct relationship 

between the concentration of a simulated 

passive scalar introduced at the nozzle and the 

ambient temperature of 40°C. 

Self-similarity of the jet was demonstrated for 

concentration, and consequently temperature. 

Therefore, the optimal nozzle diameter could 

be determined solely from a single high-fidelity 

simulation.  

Achieving a safe air temperature of 32°C 

everywhere in the region representing the 

driver’s head from an orthogonally positioned 

nozzle was deemed to be impractical due to 

size constraints. Instead, it is recommended 

this performance requirement be relaxed to 

achieving a mean temperature of 32°C in the 

head region with a jet angled directly at the 

driver.  

Based on this more attainable requirement, it is 

recommended the new UK bus regulations 

dictate a: 

• 22cm diameter nozzle, 

• angled at 21° to the vertical axis of the 

steering wheel, 

• with a volumetric flow rate of 0.2-

1.1m3/min at 21°C. 

However, the current concept has a number of 

limitations, mainly related to its position in the 

steering wheel. Therefore, it is suggested that 

the feasibility other nozzle locations and/or 

multiple jets be investigated before committing 

to adopting the aforementioned 

recommendation. 
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Introduction 
Maintaining a high level of concentration is 

critical for the driver of a vehicle, especially 

mass transit vehicles such as buses, as the 

potential consequences of reduced driver focus 

are severe for passengers and pedestrians. 

Elevated ambient temperatures can cause the 

driver to experience heat stress which is known 

to cause a deterioration in cognitive 

performance. A study into the effect of heat on 

bus drivers suggested that the safe driving 

time, before the core temperature of the driver 

exceeds 38°C, at an ambient temperature of 

40°C is approximately 50 minutes, whereas at 

32°C it is at least 80 minutes, and probably 

indefinitely (Dong, 2022). 

In the UK, more road traffic accidents occur in 

the summer months of the year (Apx. B). This 

is surprising, as intuitively more accidents 

should happen in the adverse weather 

conditions and longer nights of the winter 

months. Therefore, the hypothesis that 

increased cabin temperatures impair a driver’s 

performance is plausible. Direct cooling of a 

person’s forehead has been shown to provide 

an improvement in cognitive performance in hot 

conditions (Gaoua & Racinais, 2011); 

therefore, injecting a cool jet of air at the 

driver’s head may enhance their ability to drive 

effectively (Fig. 1). 

This report will evaluate the feasibility of direct 

cooling of the driver’s head, by performing a 

single high-resolution computational fluid 

dynamics (CFD) simulation and a thorough 

statistical analysis of the results. A single 

simulation is sufficient to define the optimal 

nozzle radius as an axisymmetric jet is self-

similar, meaning the time-averaged cooling 

effect is solely dependent on the radius of the 

jet (Box 2). Multiple iterative simulations would 

necessitate a poorer resolution for a given 

computation time, and since this project was 

severely time-constrained, a single simulation 

was preferred. 

 

Box 1: What is Turbulence? 

Turbulence is characterised by chaotic, unsteady behaviour of swirling vortices, known as eddies, 

across a wide range of length scales, and is typically associated with a high Reynold’s number: 

Re =
inertial force

viscous force
=

𝜌𝑈𝐿

𝜇
,                                                      (1)   

where 𝜌 is the density, 𝑈 and 𝐿 are the characteristic velocity and length and 𝜇 is the dynamic 

viscosity. The eponym of this dimensionless number, Osborne Reynolds, also proposed a 

decomposition of the fluid flow field 𝑢 into a time-averaged flow 𝑢(𝑥)̅̅ ̅̅ ̅̅  and the instantaneous 

random fluctuations 𝑢′(𝑥, 𝑡): 

𝑢(𝑥, 𝑡) = 𝑢(𝑥)̅̅ ̅̅ ̅̅ + 𝑢′(𝑥, 𝑡).                                                      (2)   

This is known as Reynold’s averaged Navier-Stokes or RANS. By definition, both the time-average 

of the fluctuations and time-derivative of the mean flow is zero:  𝑢′(𝑥, 𝑡)̅̅ ̅̅ ̅̅ ̅̅ ̅ =  0 and 𝜕𝑢(𝑥)̅̅ ̅̅ ̅̅ /𝜕𝑡 = 0. 
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Jet Simulation 
To simulate the cooling performance of the jet, 

the MOBILE implicit large eddy simulation 

(LES) software was used on the University of 

Bristol’s supercomputer, BlueCrystal 4. A 10cm 

diameter jet was virtually positioned at the 

centre of a 1m3 cube, representing the centre 

of the driver’s steering wheel in the bus cabin 

(Fig. 1). The cabin was rotated by 12° with air 

injected at 0.2m/s (~0.1m3/min) and with an 

equal flow rate out of the porous membrane. It 

should be noted that impact of the driver on 

the flow, and buoyancy effects were not 

simulated. Based on anthropological data, in 

the UK, the 95th percentile largest male has a 

finger-to-elbow length of 508mm and a 

vertical-elbow-to-eye length of 567mm 

(Pheasant, 1982). The performance of the jet 

was evaluated in a 250x250x250 mm box 

around this point (head-box), with the eye level 

central in the box and with the elbow and box 

aligned (Fig. 1). The 95th percentile male was 

assumed to be the worst-case scenario, as 

shorter drivers would be closer to the nozzle 

and experience increased cooling. Given the 

limited time available for this project, a 

512x512x512 (5123) cubic element mesh 

was implemented as a compromise between 

fidelity and computation time. The 5123 mesh 

gives a minimum resolvable eddy size of 

3.9mm, larger than the smallest eddies 

Box 2: Axisymmetric Turbulent Jets 

An axisymmetric turbulent jet injected into a quiescent (stationary) fluid is a canonical example of 

free turbulence. An interesting quirk of a turbulent jet is that while momentum is conserved in the 

jet, mass flow increases, because the jet entrains fluid from the surrounding. This causes the radius 

of the jet 𝑅 to linearly increase with distance 𝑧: 

𝑅(𝑧) = 𝑅0 + 𝛼𝑧,                                                                  (3)   

where 𝛼 is the mass entrainment factor and 𝑅0 is the nozzle radius (Lawrie, 2018). It can also be 

shown that a theoretical free jet is self-similar, such that the axial velocity 𝑢𝑧̅̅ ̅ and concentration 

𝜙̅ profile normalised by the value at the centreline of the jet 𝑢𝑧̅̅ ̅ are constant throughout the jet: 

𝑢𝑧̅̅ ̅(𝜂)

𝑢𝑧,𝑐̅̅ ̅̅ ̅
=

𝜙̅(𝜂)

𝜙𝑐
̅̅ ̅

=
1

(1 + 𝜆𝜂2)2
,    where  𝜂 =

𝑥

𝑅(𝑧)
.                                      (4)   
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Fig. 1: Diagram of the setup implemented in simulation. 
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(~0.8mm) based on the Kolmogorov length 

scale (Apx. C). Using LES means eddies 

smaller than 3.9mm are indirectly simulated; for 

an implicit LES, the inherent numerical 

truncation error is used to simulate the smallest 

eddies. The 5123 mesh required over 130 

hours of computation time to produce just 30 

seconds of simulated data, validating the 

decision not to use an even finer mesh.  

The concentration of the passive scalar ‘dye’ 

representing cool air can be seen in Fig. 2. 

Initially, the relative motion of the moving jet 

and quiescent fluid causes a toroidal vortex 

followed by Kelvin-Helmholtz instabilities, 

forming a range of different sized eddies, a 

quintessential characteristic of turbulence. 

Eventually, the jet impinges on the porous 

membrane, and henceforth, the time-averaged 

flow of the jet is steady. To reject the unsteady 

flow of the initial transient toroidal vortex (Fig. 

2a), the average was taken from when the jet 

impinges on the wall (t = 11.5s) onwards. 

Fig. 3a shows the time-averaged flow of the jet 

diverging linearly from a virtual origin around 

0.3m below the jet exit. An inviscid potential 

core region forms in the centre of the jet and 

quickly dissipates into turbulence in the mixing 

regions either side of the core (White, 2006). 

The edges of the jet were defined as the points 

at which the passive scalar concentration was 

10% of the maximum at that specific Z-

displacement. The gradient of the jet was 

determined using linear regression, between Z 

= 0 to 0.8m to avoid the dispersion of the jet 

at the wall contaminating the data (Fig. 3a), 

giving a mass entrainment factor 𝛼 = 0.17 

(Eq. 3). This agrees closely with a value of 

0.183 from experimental data (Boguslawski, 

1979). Fig. 3b shows how the time-averaged 

jet follows the predicted analytical curve: 𝜆 = 

1.64 (Eq. 4), confirming that the time-

averaged jet is indeed self-similar. As the jet is 

self-similar (Box 2), this simplifies the design 

process as the concentration of the jet solely 

depends on its geometry. 

Closure Models 
To understand the turbulent properties of the 

jet beyond the analytical model, an 

axisymmetric numerical simulation was used. 

The radial diffusion of turbulence is analogous 

to molecular diffusion (Pope, 2001): 

𝜕𝜙

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝜈𝑡𝑟

𝜕𝜙

𝜕𝑟
).                 (5) 

Two alternative methods of calculating the eddy 

viscosity 𝜈𝑡 (Box 3)of the jet were applied: the 

simple Modified Mixing Length (MML) 

(Prandtl, 1925) and more complex k-ε model 

(Launder & Spalding, 1983): 

𝜈𝑡,𝑀𝑀𝐿 = 𝛾𝑈𝐿, 𝜈𝑡,𝑘−𝜀 = 𝐶𝜇

𝑘2

𝜀
,     (6) 

Fig. 2:  Concentration of passive scalar in the XZ plane at the midpoint of the Y axis, Re ~ 1300. (a) After 3s the jet shows a 
toroidal vortex and Kelvin-Helmholtz instabilities. (b) After 10s the jet shows a large variation in eddy size.(c) At 15s the jet 
has reached a time-averaged stead-state. 

X 

Z Toroidal vortex 

K-H Instability 

Jet impinges on wall 

Range of eddy 

sizes g 
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where 𝛾 and 𝐶𝜇 are constants, 𝑘 is the 

turbulent kinetic energy (TKE) and 𝜀 is the 

turbulent energy dissipation (TED). The full 

mathematical and computational 

implementation of both models can be seen in 

Appendix D. The primary assumptions in the 

model were that the jet was steady-state, 

momentum was conserved, and that velocity 

only varied in the Z-direction. The turbulent 

diffusion and eddy viscosity equations were 

solved simultaneously using a variable-step, 1st 

order Forward Euler numerical integrator. The 

Forward Euler method is less accurate than 

higher order Runge-Kutta methods; however, as 

the expected results are expected to be 

approximately linear (Eq. 3), sufficient accuracy 

can be achieved with a simple solver. To 

decrease the computation time, the step size 

was adapted dynamically based on the local 

error in the system. The number of degrees of 

freedom was minimised for simplicity when 

fitting the model parameters, with only 𝛾 

adjusted in the MML and 𝑘0(𝐼) in the k-ε 
model, giving 𝛾 = 0.015 and the turbulent 

intensity 𝐼 = 3.5%. This agrees with the 

literature, with 𝛾 = 0.016 for boundary layers 

and 𝛾 = 0.018 for plane jets (White, 2006).  

All other parameters in the k-ε model were kept 

as the standard values (Apx. D) (Launder & 

Spalding, 1983). 

Fig. 3: (a) Average dye concentration 𝜙 from 11.5 to 21 seconds at midpoint of Y axis for jet with nozzle radius 𝑅0 = 5cm.   
(b) Self-similarity of the jet (dye concentration) at different Z-distances. 
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Box 3: The Closure Problem 

One of the largest problems associated with the RANS equations is known as the closure problem. 

As the mean of the turbulent fluctuations is zero 𝑢′̅ = 0, multiple terms in the Navier-Stokes (NS) 

equations can be cancelled; however, the mean of the product of the fluctuations, known as 

Reynold’s stress, is not zero  𝑢′𝑢′̅̅ ̅̅ ̅ ≠ 0, and cannot be cancelled. Subsequently, there are more 

unknown variables than equations, which is mathematically unsolvable. The Reynold’s stress term 

could be re-substituted back into the NS equations; however, this simply gives a higher order 

unknown 𝑢′𝑢′ 𝜕𝑢′

𝜕𝑥
 

̅̅ ̅̅ ̅̅ ̅̅ ̅̅
≠ 0. Continuing to follow this process only creates higher and higher order 

unknowns, without ever removing the unknown and closing the equations.  

Therefore, in 1877 Boussinesq proposed an additional equation to calculate the Reynold’s stress 

based on the viscous effect of small-scale eddies, known as the eddy viscosity 𝜈𝑡 (Pope, 2001). 
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The mixing length model shows better 

correlation with the LES jet profile (Fig. 4a), as 

𝛾 was adjusted specifically to fit the radial 

profile, whereas 𝐼 also needed to satisfy the 

TKE profile (Fig. 4c). The mass entrainment 

factors for both models are reasonably 

accurate, giving a time-averaged 𝛼 of 0.24 and 

0.22 for the MML and k-ε model respectively 

(Fig. 4b) compared to 0.17 from the LES. 

Both models predicted the mean axial velocity 

accurately (Fig. 4d); however, this is the time 

and radially averaged velocity. The assumption 

of a constant velocity across the jet is weak, as 

the LES shows a large variation in velocity 

across the jet. Therefore, the two closure 

models cannot estimate the variation in the rate 

of turbulent mixing across the jet, such as in 

the potential core versus in the mixing region 

(Fig. 3a), which is one of the major limitations 

of this simple model. The TKE in the k-ε model 

has a similar average gradient to that of the 

LES, although the initial TKE is significantly 

higher (Fig. 4c). It is known that the standard 

k-ε model does not predict axisymmetric jets 

well (Launder & Spalding, 1983), so the 

inaccuracy in the k-ε predictions is expected. 
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Heat Transfer 
If the variation in temperature is small, it can be 

assumed the temperature has no effect on the 

flow (Pope, 2001), and therefore a passive 

scalar can be used to model the temperature 𝑇: 

𝑇 = 𝑇𝑎𝑚𝑏 + (𝑇𝑗𝑒𝑡 − 𝑇𝑎𝑚𝑏)𝜙(𝑟, 𝑧),      (7) 

where 𝑇𝑎𝑚𝑏=40°C and 𝑇𝑗𝑒𝑡=21°C are the 

temperatures of the hot ambient and cool 

injected air respectively. Fig. 5 shows a limited 

cooling effect of the jet in orthogonal 2D 

planes at the side and centre of the cube 

representing the driver’s head (head-box), with 

a minimum temperature of 33°C, above the 

safe temperature limit. This is because the jet 

bypasses the driver before exiting out of the 

porous membrane at the top. It was found that 

the entrainment factor was constant in the 

MML model or had a slight negative correlation 

with velocity in the k-ε model (Fig. 6a). For 

simplicity, the MML assumption that 𝛼 = 0.17 

is a constant was used. Thus, a nozzle of 

0.37m (Fig. 1, Eq. 3) is required for the jet to 

encompass the entire headbox, and an even 

larger nozzle is required to ensure all of the 

head-box remains below 32°C, larger than the 

steering wheel itself. 

Instead, the nozzle could be aimed directed at 

the driver, to minimise the cool air bypass. The 

jet itself was not rotated in simulation due to 

the extensive computation time required for a 

high-fidelity simulation, so the previous 

simulation was rotated by 21° to direct the jet 

at the centre of the head-box (Fig. 6b). As the 

walls have limited impact on the flow of the jet 

in the head-box, and since buoyancy effects 

were neglected, the rotation of the geometry 

and gravity vector was assumed to have 

minimal effect. Nonetheless, the 10cm 

diameter jet still provided insufficient cooling to 

the driver.  

As the jet is self-similar (Fig. 3b), the 

temperature profile across the normalised 

radius is identical everywhere in the jet and can 

be used to predict the temperature across a 

larger jet. The maximum width of the head-box 

in the XZ plane occurs at Z = 0.7m and is 

0.34m (Fig. 6b). However, the maximum width 

of the head-box in any plane is across the 

diagonal at 0.36m. The head-box is not axi-

symmetric but if the radius of cool air 

(T<32°C) in the jet is greater than 𝑅𝐻−𝐵 = 

0.18m at Z = 0.7m, then the entirety of the 

head-box will be sufficiently cooled.  

  

  

  

  

  

  

Fig. 5: Performance of jet: 𝑅0=5cm, based on orthogonal jet position in the (a) XZ plane at the side (Y = 125mm) 

and (b) YZ plane at the centre (X = 0mm) of the head box. In both cases the jet passes in front of the driver with 

minimal cooling effect. 
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The time-averaged passive scalar concentration 

at the centre of the jet at Z = 0.7m was 𝜙𝑚𝑎𝑥 

= 0.71; however, the instantaneous 

concentration fluctuates wildly. Therefore, to 

ensure 95% certainty, the time-averaged 

concentration was reduced by 2 standard 

deviations, giving 0.48 (Fig. 7a). 𝜙𝑚𝑎𝑥 can 

then be substituted into the self-similarity graph 

(Fig. 3b) and transformed into temperature 

(Eq. 7). The temperature self-similarity curve 

closely follows the time-averaged temperature 

data from the simulation; however, the 95% 

certainty curve does not (Fig. 7b). This is 

because the standard deviation not only 

changes 𝜙𝑚𝑎𝑥 but also the shape of the 

concentration distribution. To compensate, the 

shape distribution factor 𝜆 was increased to 3.1 

(Eq. 4). This gives a normalised radius 𝑟/𝑅 = 

0.22 for 95% confidence scenario. 

Consequently, to ensure that nowhere in the 

head-box exceeds 32°C at any time once the 

jet has reached steady state with 95% 

confidence, the total radius of the jet must be 

     k-ε: U = 0.1 

     k-ε: U = 0.2 

     k-ε: U = 0.4 

     MML 

Fig. 6: (a) Impact of varying velocity on the radius of the jet. (b) Temperature in the XZ plane after rotating the jet by 21 degrees 

at the side of the head (Y = 125mm). The regions that would not be in a rotated simulation have been shaded. 
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Fig. 7: (a) Decay of concentration of passive scalar along the centreline of jet. (b) Self-similarity of the temperature 

in the jet at Z = 0.7m, based on Figure 3b.  
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0.81m at Z = 0.7m. This is physically 

impossible given the width of bus cabin is 1m.  

However, it should be questioned whether the 

entirety of the air in the head-box needs to be 

always kept below 32°C to ensure the driver’s 

head remains below 32°C. Since the time-

average of the fluctuations is zero (Box 1), the 

fluctuations which increase the temperature will 

be counteracted by those which decrease the 

temperature over a sufficiently long time. As the 

volume of the driver’s head is much greater 

than that of the eddies, and thermal conduction 

through the driver’s skin will occur faster than 

convection at the interface, these fluctuations 

will have a negligible effect on the temperature 

of the driver’s head, and therefore specifying 

that nowhere in the head-box should ever 

exceed 32°C is excessively stringent.  

Instead, a time-averaged temperature of 32°C 

is more reasonable. To ensure that nowhere in 

the headbox (𝑅𝐻−𝐵=0.18m) has a time-

averaged temperature above 32°C, 𝑟/𝑅 = 

0.42 (Fig. 7b) giving the total radius of the jet 

as 0.43m at Z = 0.7m. This is physically 

possible; however, the nozzle radius must be 

0.29m with 𝛼 = 0.17 (Eq. 3), which is 

infeasible to implement as the nozzle would be 

larger than the width of the steering wheel. 

Therefore, even with a jet directed at the driver, 

it is infeasible to ensure a safe average 

temperature everywhere in the head-box.   

A further relaxation to this requirement is 

necessitated. Since the head-box is larger than 

the driver’s head, if the direction of the jet is 

controllable, the driver could aim the cooler, 

central column of air at their head. Also, if the 

volume of the driver’s head is considered, the 

actual volume of air in the headbox will be less 

than simulated and it will be the hot air at the 

boundary which is displaced. Finally, forced 

convection will occur at the interface between 

the driver’s skin and the air, which will remove 

heat more effectively than free convection.  

Therefore, rather than maintaining a safe time-

average temperature everywhere in the head-

box, it is argued that it is sufficient to maintain 

a time-average of 32°C averaged across the 

volume of the head-box. The normalised radius 

that achieves this is 𝑟/𝑅 = 0.64 (Fig. 7b) 

giving a more obtainable jet radius of 0.28m at 

Z = 0.7m and thus a nozzle of radius of 11cm. 

After activating the jet, the driver will notice the 

cooling effect 5 seconds later, as the initial 

transient vortex enters the head-box, followed 

by a decrease in temperature until steady state 

(Fig. 8b). Increasing the initial jet velocity will 

reduce this time and improve the rate of forced 

convection heat transfer that occurs; however, if 
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plane at the side (Y = 125mm) and (b) YZ at the front (X = -125mm) of the head box. (b) Spatial average across 

headbox over time. 
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the velocity is too great, it could be distracting 

for the driver and would require a larger fan. 

The preferred option would be to enable the 

driver to control the velocity, in the range of 

~0.1-0.5m/s which would achieve a steady-

state temperature in 5-20 seconds.  

Unfortunately, due to time constraints it was 

not possible to perform a second 5123 element 

simulation. However, a 2563 element 

simulation was performed with U0 = 0.1m/s 

and R0 = 11cm (Fig. 8a). The cooling of the 

jet performed better than self-similarity 

prediction with a time-average of 28.2°C 

across the entire head-box, albeit with an 

increased temperature fluctuation (Fig. 8b). It 

improved so much that even with R0 = 8cm, a 

safe air temperature could be achieved. 

However, this is almost certainly caused by a 

2563 element simulation having an 

unrealistically high mass entrainment factor of 

up to 0.20 (Apx. E). This validates the earlier 

decision not to perform multiple 2563 element 

simulation and a more conservative nozzle 

diameter of 22cm is still recommended. 

Unfortunately, the jet still has numerous 

inherent design flaws. Placing the jet in the 

steering wheel will remove space for other 

components which are already located there, 

such as an airbag and horn. Additionally, the jet 

would protrude out of the steering wheel and 

become a hazard in an emergency braking 

event. These issues counteract the fundamental 

premise of the jet: to improve safety. 

Additionally, incorporating a non-rotating nozzle 

into the rotating steering wheel would increase 

design complexity and therefore cost, ultimately 

increasing bus fares for commuters. 

Conclusion 
Using a high-fidelity fluid dynamics simulation, it 

has been shown that achieving the safe 

temperature of below 32°C always and 

everywhere in the head-box is unrealistic given 

the inherent chaotic nature of turbulent flows. 

However, it is reasonable to achieve a spatio-

temporal averaged temperature of 32°C. Based 

on this relaxed performance criteria, it is 

recommended the regulations specify a 22cm 

diameter jet, with an exit velocity of 0.1-0.5 

m/s, for a volume flow rate of 0.2-1.1 m3/min 

for the specified inlet temperature of 21°C.   

Further analysis should be conducted into 

validating this design using a 5123-element 

simulation or experimental methods. Studies 

should also be conducted into the feasibility of 

reducing the inlet air temperature or increasing 

the turbulence intensity in the nozzle, as this 

would allow a smaller diameter to nozzle to be 

used, as a 22cm diameter nozzle would still 

cause size related design challenges. It is also 

recommended that the feasibility of alternative 

or multiple jet positions are studied, as placing 

the jet at the centre of the steering wheel 

introduces safety concerns and design 

complexities. Finally, the simulation could 

incorporate more anthropomorphic elements, 

such as simulating the flow around the driver’s 

head and the temperature of the driver’s head, 

rather than the locally surrounding air.

References 
Boguslawski, L. a. (1979). Flow structure of the free round turbulent jet. Journal of Fluid Mechanics, 90(3), 531-539. 
Department for Transport. (2022). RAS9103: Reported casualties by police force, Great Britain, ten years up to 2022 (annual 

provisional estimates). Retrieved from https://www.gov.uk/government/statistical-data-sets/ras45-quarterly-statistics 

Dong, X. S. (2022). Stress Response and Safe Driving Time of Bus Drivers in. International Journal of Environmental Research and 

Public Health. Retrieved from https://doi.org/10.3390/ 

Gaoua, N., & Racinais, S. (2011). Alterations in cognitive performance during passive hyperthermia. International Journal of 

Hyperthermia. Retrieved from https://doi.org/10.3109/02656736.2010.516305 

Launder, B. E., & Spalding, D. B. (1983). The numerical computation of turbulent flows. Numerical prediction of flow, heat transfer, 

turbulence and combustion., 96-116. 

Lawrie, A. (2018). Submerged Turbulent Jets.  

Pheasant, S. (1982). Anthropometric estimates for British civilian adults. Ergonomics, 25(11). 

Pope, S. (2001). Turbulent Flows. 93,161. 

Prandtl, L. (1925). 7. Bericht über Untersuchungen zur ausgebildeten Turbulenz. ZAMM‐Journal of Applied Mathematics and 

Mechanics/Zeitschrift für Angewandte Mathematik und Mechanik, 136-139. 

White, F. (2006). Viscous Fluid Flow (3 ed.). New York: McGraw-Hill. 



Bus Cabin Cooling: Feasibility of a Turbulent Jet 

 P A G E | 11  

               

  

   

   

   

   

   

   

   

   

   

Appendices

Image: Turbulent Kinetic Energy at t = 8s 



Bus Cabin Cooling: Feasibility of a Turbulent Jet 

 P A G E | 12  

Appendix A: Glossary
Axisymmetric – A geometry which has a 

rotational symmetry about an axis, such as a 

cylinder or sphere. 

Canonical – A widely-studied and representative 

example (of turbulence). 

Eddy – A swirling motion that occurs in a fluid. 

Eddy viscosity – An effective viscosity which 

characterises the impact of small-scale eddies 

on the larger flow field. 

Entrain – The phenomena by which a moving 

fluid incorporates another fluid as it flows past. 

Head-box – The 250x250x250mm cube which 

encloses the driver’s head, based on the height 

of the 95th percentile UK male.  

Impingement – The collision of a fluid stream 

with a solid surface.  

Kolmogorov length scale – The size of the 

smallest eddies. 

Linear Regression – A method by which a 

straight line is chosen to be as similar as 

possible to the underlying data to minimise the 

difference between the datapoints and the line. 

Passive scalar – A contaminant which is 

transported by a fluid, but has no impact on the 

fluid itself. 

Quiescent - Being at a state of rest. 

Self-similarity – Used to describe a system 

where parts of different length scales appear 

identical when scaled to be the same size.   

Spatio-temporal average – Taking an average 

across both time and space. 

Steady-state – A condition where the properties 

of a system do not change with time.  

Toroidal vortex – A swirling mass of fluid which 

has a doughnut-like geometry.  

Truncation error – Error caused by 

approximating an infinite sum of mathematical 

operations by only considering a finite number 

of operations. 

A3 – describing the number of the grid elements 

in the simulation. For instance, a 5123 mesh 

would have 512 boxes in each the horizontal, 

vertical and depth-wise direction in which the 

velocity of fluid in that box is specified. 

CFD (Computational Fluid Dynamics)- the use 

of numerical algorithms to predict the properties 

of a fluid flow. 

K-H (Kelvin-Helmholtz instability)- An instability 

that occurs at the interface between two 

relatively moving fluids. 

LES (Large Eddy Simulation)- a CFD method in 

which the smallest turbulent eddies are not 

simulated directly, but indirectly using some 

form of model which acts within each grid 

element. 

NS (Navier-Stokes) - The equations that govern 

the flow of fluids, based on the conservation of 

mass and momentum (and sometimes energy). 

MML (Modified Mixing Length) – A turbulent 

closure model for the RANS equations, which 

states the eddy viscosity depends only on the 

characteristic velocity and length-scale of the 

fluid and a constant. 

RANS (Reynold’s-Averaged Navier-Stokes)- a 

CFD method in which the time-fluctuating 

velocity is not simulated directly, but indirectly 

using some form of closure model. It is 

generally quicker but less accurate than LES. 

TED (Turbulent Energy Dissipation)- a measure 

of the rate of conversion of turbulent kinetic 

energy to thermal energy in the eddies. 

TKE (Turbulent Kinetic Energy)- a measure of 

the energy stored in the system as the random 

motion of eddies. 
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Appendix B: UK Temperature 

 

 

Appendix C: Kolmogorov Microscales 
The Kolmogorov length scale 𝜂𝐿 defines the 

smallest size of turbulent eddies before viscous 

forces dissipate the eddies into heat (Pope, 

2001). The time scale 𝜂𝑡 refers to the time it 

takes for this process to occur. 

𝜂𝐿 = (
𝜈𝑡

3

𝜀
)

0.25

, 𝜂𝑡 = (
𝜈𝑡

𝜀
)

0.5

.      (8) 

From Fig. 4c, the minimum TKE away from the 

nozzle exit is ~1e-4 m2/s. From the numerical 

k-ε model, the largest TED was ~2e-4.  

 

 

 

This gives a minimum eddy viscosity of 𝜈𝑡 ~ 

4.5e-6 (Eq. 6) therefore  𝜂𝐿 ~ 0.8mm, and 

𝜂𝑡~0.15s. For comparison, the smallest eddy 

that can be resolved in simulation is a 2x2x2 

cube of elements, which for the 5123 simulation 

in a 1m3 box is ~4mm.  
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Appendix D: RANS Closure Modelling 
D.1Turbulent Diffusion 

The turbulent diffusion of dye orthogonally to 

the flow of the jet can be expressed using Fick’s 

2nd law: 

𝜕𝜙

𝜕𝑡
=

1

𝑟

𝜕

𝜕𝑟
(𝜈𝑡𝑟

𝜕𝜙

𝜕𝑟
),           (9)   

with the motion of the jet displacing the dye 

axially: 

𝑑𝑧

𝑑𝑡
= 𝑈𝑗𝑒𝑡 .                       (10) 

As momentum is conserved: 𝐴𝑈𝑗𝑒𝑡
2 = 𝑐𝑜𝑛𝑠𝑡, 

the velocity of the jet can be expressed in terms 

of the radius: 

𝑈𝑗𝑒𝑡(𝑧) =
𝑅0

𝑅(𝑧)
𝑈𝑗𝑒𝑡,0.              (11) 

Since the volumetric flow rate of the dye is 

constant, the total volume of dye at each z-level 

is also constant: 

2𝜋 ∫ 𝑟𝜙(𝑟)𝑑𝑟 = 𝜙0𝜋𝑟2,

𝑅

𝑟=0

           (12) 

 which allows the radius of the jet to be solved. 

D.2 Mixing Length Model 

The simplest one equation model to estimate 

the eddy viscosity uses the principle that 

kinematic viscosity is dimensionally identical to 

the product of velocity and length. Taking the 

characteristic velocity and length as the axial jet 

velocity and radius respectively: 

𝜈𝑡 = 𝛾𝑈𝑗𝑒𝑡𝑅.                      (13) 

D.3 k-ε Model 

However, the simplicity of the Prandtl mixing 

length model limits its effectiveness in predicting 

the turbulent characteristics. A more accurate 

method relates the eddy viscosity to the 

turbulent kinetic energy and dissipation: 

𝜈𝑡 = 𝐶𝜇

𝑘2

𝜀
,                           (14)   

Assuming the turbulent characteristics of the jet 

only vary in the axial direction, the k-ε transport 

equations can be simplified : 

𝜕𝑘

𝜕𝑡
=

𝜕

𝜕𝑧
(

𝜈𝑡

𝜎𝑘

𝜕𝑘

𝜕𝑧
) + 2𝜈𝑡 (

𝜕𝑈𝑗𝑒𝑡

𝜕𝑟
−

𝑘

3
) − 𝜀

− 𝑈𝑗𝑒𝑡

𝜕𝑘

𝜕𝑧
                  (15𝑎) 

𝜕𝜀

𝜕𝑡
=

𝜕

𝜕𝑧
(

𝜈𝑡

𝜎𝜀

𝜕𝜀

𝜕𝑧
) + 2𝐶1𝜈𝑡 (

𝜕𝑈𝑗𝑒𝑡

𝜕𝑟
−

𝑘

3
)

𝜀

𝑘

− 𝐶2

𝜀2

𝑘
− 𝑈𝑗𝑒𝑡

𝜕𝜖

𝜕𝑧
.    (15𝑏) 

With 𝐶𝜇 = 0.09,  𝜎𝑘 = 1.0,  𝜎𝜀.=1.3, 𝐶1=1.44, 

𝐶2=1.92. The standard initial conditions for k-ε 

are: 

𝑘0 =
3

2
(𝑈𝑗𝑒𝑡𝐼)

2
,   𝜀0 = 𝐶𝜇

3
4

𝑘
3
2

𝐿𝑡
,   𝐿𝑡 =

7𝐷0

100
,   

                        (16) 

D.4 Numerical Implementation 

To solve the diffusion equation, first order 

numerical differentiation was implemented: 

𝜕𝜙

𝜕𝑟
≈

𝜙
𝑖+

1
2

− 𝜙
𝑖−

1
2

Δ𝑟
,                 (17)  

With Dirichlet boundary conditions: 

𝜙𝑖=0 = 𝜙𝑖=𝑒𝑛𝑑 = 0.                  (18) 

The same process was repeated for terms 

inside the bracket. To numerically integrate, the 

1st order Euler method was used due to its 

simplicity: 

𝜙𝑛+1 = 𝜙𝑛 +
𝜕𝜙𝑛

𝜕𝑡
Δ𝑡𝑛.                 (19) 

To reduce the time required to calculate the 

answers, a variable time step was introduced. 

To determine the performance of the solver at 

each timestep, a full step (see above) and 
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double half-step numerical integration was 

performed: 

𝜙′𝑛+1/2 = 𝜙𝑛 +
𝜕𝜙𝑛

𝜕𝑡

Δ𝑡𝑛

2
,          (20)  

𝜙′𝑛+1 = 𝜙𝑛+1/2 +
𝜕𝜙𝑛+1/2

𝜕𝑡

Δ𝑡𝑛

2
  .     (21) 

Since the double half-step is assumed to always 

be more accurate than the single full-step, the 

effective error could be calculated: 

𝑒𝑒𝑓𝑓 = |𝜙′
𝑛+1 − 𝜙𝑛+1|.        (22) 

This allowed the timestep to be dynamically 

adjusted based on a pre-determined error 

tolerance and saturation limits: 

Δ𝑡𝑛+1 = min (max (√
𝑡𝑜𝑙

2𝑒𝑒𝑓𝑓
, 0.5) , 2)

Δ𝑡𝑛

1.01
.  

 (23) 

Additionally, simple moving average smoothing 

was applied to the concentration periodically to 

reduce the gradients which helped with 

reducing computation time. The radius of the jet 

was calculated by gradually increasing the test 

radius until the concentration exceeded 99.9% 

of the original concentration: 

while ∑ 𝑟𝜙(𝑖)

𝑅𝑡𝑒𝑠𝑡

𝑖=0

< 0.999
𝜙0𝑟2

2
,

𝑅𝑡𝑒𝑠𝑡 = 𝑅𝑡𝑒𝑠𝑡 + 1.             (24) 
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D.5 Computational Implementation (MATLAB) 

D.5.1 Diffusion equation 

function dphi_dt = diffusion_eq(r,dr,phi,k) 
 
    % Calculate the rate of diffusion in radial co-ordinates 
 
    % dphi/dr 
    phi_half = [0 (phi(2:end) + phi(1:end-1))/2 0]; % Calculate the midpoints of 
each element 
    dphi_dr = diff(phi_half)/dr; % Calculate the 1st derivative 
     
    % d/dr(kr_dphi_dr) 
    kr_dphi_dr = k.*r.*dphi_dr; 
    kr_dphi_dr_half = [0 (kr_dphi_dr(2:end) + kr_dphi_dr(1:end-1))/2 0]; 
    d_dr_kr_dphi_dr = diff(kr_dphi_dr_half)/dr; 
     
    % Full equation 
    dphi_dt = 1./r .* d_dr_kr_dphi_dr; 
 
    % dividing by r = 0 gives NaN which must be removed by taking the 
    % average of the co-ords either side 
    nan_indx = find(isnan(dphi_dt));  
    dphi_dt(nan_indx) = (dphi_dt(nan_indx-1) + dphi_dt(nan_indx+1))/2; 
end 
 

D.5.2 Smoothing function 

function phi_new = smoothing(r,phi,i,freq,window) 
 
    % Simple Moving Average smoothing 
    % Occurs every *freq* iterations with window length *window_percent* % 
    % of the entire spatial size  
     
    centre_index = (length(r)+1)/2; 
    if mod(i,freq) == 0 % every so often apply periodic smoothing 
        phi2 = movmean(phi(centre_index:end),window); 
        phi_new = zeros(1,length(r)); 
        phi_new(centre_index:end) = phi2; 
        phi_new(1:centre_index) = fliplr(phi2); 
 
        phi_tot = sum(phi .* abs(r)); % add a correction factor so the total 
volume of dye does not change 
        phi_tot_smooth = sum(phi_new .* abs(r)); 
        correction_factor = phi_tot / phi_tot_smooth; 
        phi_new = phi_new * correction_factor; 
 
    else 
        phi_new = phi; 
    end 
 
end 
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D.5.3 𝑘-𝜀 model 

function [nu_turb,k,eps] = k_epsilon(k,eps,U_jet,R,z,dt,i) 
 
    % Eddy Viscosity 
    C_mu = 0.09; 
    nu_turb(i) = C_mu*k(i)^2/eps(i); 
 
    % Velocity shear gradient 
    du_jet_dr(i) = U_jet(i) / R(i); 
 
    % k-epsilon model ----------------------------------------------------- 
    % k equation: Four terms, term 1: d/dz(nu_t dk/dz), term 2: 2 nu_t Eij, 
    % term3: -epsilon, term4: d/dz(ku) 
 
    LPfilter = 1e-3; % add a low pass filter to 1st term in both equations 
    C = [1 1/1.3 1.44 1.92]; 
 
    if i > 2 
        dk_dz(i) = C(1) * nu_turb(i)*(k(i) - k(i-1))/(z(i)-z(i-1)); 
        k_term1(i) = (dk_dz(i) - dk_dz(i-1))/(z(i)-z(i-1)); 
 
        k_term1(i) = LPfilter*k_term1(i) + (1-LPfilter)*k_term1(i-1); 
    else 
        k_term1(i) = 0; 
    end 
    k_term2 = 2*nu_turb(i)*(du_jet_dr(i) - k(i)/3); 
    k_term3 = - eps(i); 
    if i > 1 
        k_term4(i) = -(k(i)*U_jet(i) - k(i-1)*U_jet(i-1))/(z(i)-z(i-1)); 
    else 
        k_term4(i) = 0; 
    end 
 
    % numerically integrate 
    dk_dt(i) = k_term1(i) + k_term2 + k_term3 + k_term4(i); 
    k(i+1) = k(i) + dk_dt(i)*dt; 
    % epsilon equation: Four terms, term 1: d/dz(nu_t deps/dz), term 2: 2 nu_t Eij 
eps/k, 
    % term3: -epsilon^2/k, term4: d/dz(eps u) 
    if i > 2 
        deps_dz(i) = nu_turb(i)* (eps(i) - eps(i-1))/(z(i)-z(i-1)); 
        eps_term1(i) = C(2) * (deps_dz(i) - deps_dz(i-1))/(z(i)-z(i-1)); 
 
        eps_term1(i) = LPfilter*eps_term1(i) + (1-LPfilter)*eps_term1(i-1); 
    else 
        eps_term1(i) = 0; 
    end 
    eps_term2 = C(3)*2*nu_turb(i)*(du_jet_dr(i) - k(i)/3)*eps(i)/k(i); 
    eps_term3 = - C(4)*eps(i)^2/k(i); 
    if i > 1 
        eps_term4(i) = -(eps(i)*U_jet(i) - eps(i-1)*U_jet(i-1))/(z(i)-z(i-1)); 
    else 
        eps_term4(i) = 0; 
    end 
    % numerically integrate 
    deps_dt(i) = eps_term1(i) + eps_term2 + eps_term3 + eps_term4(i); 
    eps(i+1) = eps(i) + deps_dt(i)*dt; 
end 
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D.5.4 Variable timestep 

function [dt2,eff_err] = variable_timestep(dt, phi_coarse,phi_fine, tol) 
    eff_err = mean(sqrt((phi_coarse - phi_fine).^2),"all"); 
    dtx = [0.5 2]; % maximum/minimum amount dt will be multiplied by 
    dt_lim = [1e-9 1e-0]; % absolute limits on dt 
    dt2 =  0.99 * min(max(sqrt(tol/(eff_err)),min(dtx)),max(dtx)) * dt; 
    dt2 = min(max(dt2 , min(dt_lim)), max(dt_lim)); 
end 
 

C.5.4 Calculation of the jet radius 

function R = jet_radius(phi,phi_sum0,r,centre_index) 
    % Radius -------------------------------------------------------------- 
    % Calculate the effective radius of the concentration curve containing 
    % 99.9% of the original volume of dye 
    ii = 0; 
    phi_sum = 0; 
    phi_sum_max = 0.99*phi_sum0;  
    while phi_sum < phi_sum_max % increment radius until > 99.9% of original dye 
        ii = ii + 1; 
        phi_sum = 
sum(phi(centre_index:centre_index+ii).*abs(r(centre_index:centre_index+ii))); 
    end 
    % Calculate the under and overshoot so that the radius can be 
    % interpolated between them 
    dphi_sum_over = phi_sum - phi_sum_max; 
    dphi_sum_under = sum(phi(centre_index:centre_index+ii-
1).*abs(r(centre_index:centre_index+ii-1))) - phi_sum_max; 
    ratio_sum = abs(dphi_sum_under) / (abs(dphi_sum_over) + abs(dphi_sum_under)); 
    R = ratio_sum*r(centre_index+ii) + (1-ratio_sum)*r(centre_index+ii-1); 
end 

 

D.5.5 Forward Euler integrator 

function phi2 = ForwardEuler(phi,dphi_dt,dt) 
    % Forward Euler Integrator 
    phi2 = phi + dphi_dt*dt;  
end 
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D.5.6 Main loop 

%% Initial Setup 
% Which closure model to use? 
closure = "k_epsilon"; 
 
% Temporal Conditions 
dt = 1e-5; t_max = 15; timesteps = round(1 / dt); t = 0; 
 
% Radial Conditions 
R = zeros(1,timesteps); R(1) = 0.05; r_max = 0.5; dr = r_max/2e3;  
r = (-r_max:dr:r_max); centre_index = find(r == 0); 
 
% Displacement (Z) Conditions 
U_jet = zeros(1,timesteps); U_jet(1) = 0.2; z = zeros(1,timesteps); 
% Initial Concentration (phi) Curve 
for i = 1:length(r) 
    if abs(r(i)) < R(1) 
        phi(i) = 1; 
    else 
        phi(i) = 0; 
    end 
end 
phi = [phi; zeros(timesteps,length(r))]; 
phi_sum0 = sum(phi(1,:).*abs(r))/2; % Total quantity of dye 
 
% Initial k-epsilon conditions 
I_t = 0.035; C_mu = 0.09; L_t = 0.07*2*R(1); k = 3/2 * (U_jet(1) * I_t)^2; 
eps = C_mu^(3/4) * k^(3/2) / L_t; 
 
%% Calculation 
disp('----- Started PDE Solver -----') 
tic 
i = 0; 
while t < t_max 
 
    i = i + 1; 
 
    phi(i,:) = smoothing(r,phi(i,:),i,5,3); % Periodic smoothing 
 
    if closure == "mixing_length" 
        nu_turb(i) = mixing_length(U_jet(i),R(i));   
    elseif closure == "k_epsilon" 
       [nu_turb,k,eps] = k_epsilon(k,eps,U_jet,R,z,dt,i); 
    end 
    nu_t(i) = nu_turb(i); 
 
    dphi_dt = diffusion_eq(r,dr,phi(i,:),nu_turb(i)); % Full step 
    phi_coarse = ForwardEuler(phi(i,:),dphi_dt,dt);  
     
    phi_fine_half = ForwardEuler(phi(i,:),dphi_dt,dt/2); % Double half step 
    dphi_dt_half = diffusion_eq(r,dr,phi_fine_half,nu_turb(i)); 
    phi_fine = ForwardEuler(phi_fine_half,dphi_dt_half,dt/2); 
    phi(i+1,:) = phi_fine; 
     
    tol = 1e-9; % Adaptive timestep 
    [dt,eff_err] = variable_timestep(dt, phi_coarse,phi_fine, tol); 
 
    dt_save(i) = dt; 
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    % Radius, displacement and velocity 
    R(i+1) = jet_radius(phi(i,:),phi_sum0,r,centre_index); 
    z(i+1) = z(i) + U_jet(i)*dt; 
    U_jet(i+1) = (R(i)/R(i+1)) * U_jet(i); 
 
    % Mass Entrainment 
    m_dot(i) = U_jet(i).*R(i).^2; 
 
    t = t+dt; 
    tlist(i) = t; 
 
    if z(i) > 1.01 % break early if jet impinges on wall 
        break 
    end 
 
    tclock = toc; % Display current solver progress 
    if mod(round(tclock*1e3),1e2) == 0 
        disp(['Progress: ' num2str(z(i)*100) '%, Clock time: ' num2str(tclock) 's, 
Timestep: ' num2str(dt_save(i)*1000) 'e-3, Eff_err: ' num2str(eff_err*1e9) 'e-9']) 
    end 
end 
disp('----- PDE Solver Complete -----') 
% Truncate the output arrays so that they are all the same length 
z = z(1:i); 
R = R(1:i); 
U_jet = U_jet(1:i); 
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Appendix E: Element Size vs Accuracy 
Aside from the obvious differences in eddy 

length scales, reduced resolution simulations 

display other inaccuracies. The 643  simulation 

shows an unrealistic symmetry, and negligible 

Kelvin-Helmholtz instability, which greatly 

reduces the mass entrainment factor.  

With increasing resolution, the axial velocity also 

reduces, as the increased entrainment of mass 

leads to a greater transfer of momentum from 

the jet to the quiescent fluid and into turbulent 

eddies. 

As the resolution improves, the error bars 

decrease. This is because the error was based 

on varying the time over which the mean was 

taken, and the higher resolution mesh has fewer 

large eddies which cause fluctuations in the 

radius of the jet. It is unclear what the mass 

entrainment factor of a 10243 element mesh 

would be, although it is definitely in the region 

of 0.15-2. 

Fig. 10: Concentration of passive scalar at t = 10s for a mesh size of (a) 643, (b) 1283, (c) 2563, (d) 5123 
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Fig. 11: Variation of mass entrainment factor for different mesh sizes. R0 = 5cm, U0 = 0.2m/s. 


